linear ordering - definição. O que é linear ordering. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é linear ordering - definição

ORDERING RELATION WHERE ALL ELEMENTS CAN BE COMPARED, EQUALITY MEANS IDENTITY; BINARY RELATION ON SOME SET, WHICH IS ANTISYMMETRIC, TRANSITIVE, AND TOTAL
Infinite descending chain; TotalOrderedSet; Total ordered set; Totally ordered set; Linear order; Total ordering relation; Total ordering; Linearly ordered set; Totally ordered; Linear ordering; Linearly ordered; Chain (order theory); Total (order theory); Toset; Linear (order); Infinite descending chains; Strict total order; Totally-ordered set; Finite chain; Strict linear order; Finite total order; Simple order; Simply ordered set; Complete total order; Chain (ordered set); Complete ordering; Complete order; Ascending chain; Loset; Chain (poset)

totally ordered         
<mathematics> Having a total ordering. (1997-01-10)
linear map         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
<mathematics> (Or "linear transformation") A function from a vector space to a vector space which respects the additive and multiplicative structures of the two: that is, for any two vectors, u, v, in the source vector space and any scalar, k, in the field over which it is a vector space, a linear map f satisfies f(u+kv) = f(u) + kf(v). (1996-09-30)
total ordering         
<mathematics> A relation R on a set A which is a {partial ordering}; i.e. it is reflexive (xRx), transitive (xRyRz => xRz) and antisymmetric (xRyRx => x=y) and for any two elements x and y in A, either x R y or y R x. See also equivalence relation, well-ordered. (1995-02-16)

Wikipédia

Total order

In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation {\displaystyle \leq } on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :

  1. a a {\displaystyle a\leq a} (reflexive).
  2. If a b {\displaystyle a\leq b} and b c {\displaystyle b\leq c} then a c {\displaystyle a\leq c} (transitive).
  3. If a b {\displaystyle a\leq b} and b a {\displaystyle b\leq a} then a = b {\displaystyle a=b} (antisymmetric).
  4. a b {\displaystyle a\leq b} or b a {\displaystyle b\leq a} (strongly connected, formerly called total).

Reflexivity (1.) already follows from connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders.

A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term chain is sometimes defined as a synonym of totally ordered set, but refers generally to some sort of totally ordered subsets of a given partially ordered set.

An extension of a given partial order to a total order is called a linear extension of that partial order.